Plant Transcription Factor Database
Previous version: v3.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G06040.1
Common NameBBX24, STO, T21E18.8, T21E18.9
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family DBB
Protein Properties Length: 248aa    MW: 27641 Da    PI: 5.5272
Description DBB family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G06040.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
     zf-B_box  5 kCpeHeekelqlfCedCqqllCedClleeHkg......Ht 38
                  C+ +e+ +++  C  ++  lC++C  e+H        H+
                 7*****************************6566676765 PP

     zf-B_box  4 rkCpeHeekelqlfCedCqqllCedClleeHk 35
                 ++C+ ++ek + +fC +++ llC+dC +++H 
                 79*****************************4 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS501199.172147IPR000315B-box-type zinc finger
CDDcd000211.24E-5345No hitNo description
SMARTSM003363.2E-7447IPR000315B-box-type zinc finger
PROSITE profilePS501199.6845299IPR000315B-box-type zinc finger
SMARTSM003361.4E-165299IPR000315B-box-type zinc finger
PfamPF006431.3E-75595IPR000315B-box-type zinc finger
CDDcd000211.21E-85598No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009640Biological Processphotomorphogenesis
GO:0009651Biological Processresponse to salt stress
GO:0048573Biological Processphotoperiodism, flowering
GO:0080167Biological Processresponse to karrikin
GO:0090351Biological Processseedling development
GO:1902448Biological Processpositive regulation of shade avoidance
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0003712Molecular Functiontranscription cofactor activity
GO:0005515Molecular Functionprotein binding
GO:0008270Molecular Functionzinc ion binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000084anatomyplant sperm cell
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 248 aa     Download sequence    Send to blast
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.232890.0flower| inflorescence| leaf| root| seed| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G06040-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: High expression in leaves and lower in roots and flowers.
Functional Description ? help Back to Top
Source Description
TAIREncodes salt tolerance protein (STO) which confers salt tolerance to yeast cells. Fully complements calcineurin deficient yeast but does not encode a phosphoprotein phosphatase. Sequence has similarities to CONSTANS. STO co-localizes with COP1 and plays a role in light signaling.
UniProtActs as negative regulator of seedling photomorphogenesis and light-regulated inhibition of hypocotyl elongation (PubMed:17605755, PubMed:18540109, PubMed:21685177). BBX24/STO and BBX25/STH function as transcriptional corepressors of HY5 activity, leading to the down-regulation of BBX22 expression. BBX24/STO acts additively with BBX25/STH during de-etiolation and the hypocotyl shade avoidance response (PubMed:23624715). Functions as negative regulator of photomorphogenic UV-B responses by interacting with both COP1 and HY5 (PubMed:22410790). May act as a transcription factor in the salt-stress response (PubMed:12909688). {ECO:0000269|PubMed:12909688, ECO:0000269|PubMed:17605755, ECO:0000269|PubMed:18540109, ECO:0000269|PubMed:21685177, ECO:0000269|PubMed:22410790, ECO:0000269|PubMed:23624715}.
Function -- GeneRIF ? help Back to Top
  1. Microscopic analysis revealed that the STO:eGFP fusion protein is located in the nucleus.
    [PMID: 17605755]
  2. Mutations in the region responsible for the interaction with COP1 revealed that a physical interaction of the proteins is also required for degradation of BBX24 in the light and for normal photomorphogenesis.
    [PMID: 21685177]
  3. STO/BBX24 functions as a negative regulator of photomorphogenic UV-B responses by interacting with both COP1 and HY5.
    [PMID: 22410790]
  4. Data suggest that BBX25 (At2g31380) and BBX24 (At1g06040) function as transcriptional corepressors, probably by forming inactive heterodimers with HY5 (At5g11260) downregulating BBX22 (AT1G78600) expression for the light-mediated seedling development.
    [PMID: 23624715]
  5. BX24 and BBX25 physically interact with HYH which leads to depletion of HYH molecules from the active pool and, thus indirectly, reduce the function of HY5 in promoting photomorphogenesis.
    [PMID: 23733077]
  6. Data indicate that the expression of the B-box family gene STO (BBX24) is controlled by circadian rhythm and is affected by environmental factors and phytohormones
    [PMID: 24498334]
  7. BBX24 physically interacts with DELLA proteins and alleviates DELLA-mediated repression of PIF4 activity.
    [PMID: 25656233]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Circadian regulation with a peak before dawn. {ECO:0000269|PubMed:17605755}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Interaction ? help Back to Top
Source Intact With
IntActSearch Q96288
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: No visible phenotype under normal growth conditions, but mutant seedlings show reduction of hypocotyls length when grown under continous blue light and a short primary root phenotype under UV-B radiation. {ECO:0000269|PubMed:17605755, ECO:0000269|PubMed:22410790}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G06040
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0457940.0AY045794.1 Arabidopsis thaliana putative salt-tolerance protein (At1g06040) mRNA, complete cds.
GenBankAY0793770.0AY079377.1 Arabidopsis thaliana putative salt-tolerance protein (At1g06040) mRNA, complete cds.
GenBankX955720.0X95572.1 A.thaliana mRNA for salt-tolerance protein.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_172094.10.0salt tolerance protein
SwissprotQ962880.0BBX24_ARATH; B-box zinc finger protein 24
TrEMBLA0A087HLD11e-160A0A087HLD1_ARAAL; Uncharacterized protein
STRINGAT1G06040.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP53971020
Publications ? help Back to Top
  1. Belles-Boix E,Babiychuk E,Van Montagu M,Inzé D,Kushnir S
    CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage.
    FEBS Lett., 2000. 482(1-2): p. 19-24
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  3. Holm M,Hardtke CS,Gaudet R,Deng XW
    Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1.
    EMBO J., 2001. 20(1-2): p. 118-27
  4. Nagaoka S,Takano T
    Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis.
    J. Exp. Bot., 2003. 54(391): p. 2231-7
  5. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  6. Cheng Y,Long M
    A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis.
    Biotechnol. Lett., 2007. 29(7): p. 1129-34
  7. Chen LH,Zhang B,Xu ZQ
    Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H (+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum).
    Transgenic Res., 2008. 17(1): p. 121-32
  8. Zhao J,Zhi D,Xue Z,Liu H,Xia G
    Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis.
    J. Plant Physiol., 2007. 164(10): p. 1377-83
  9. Obata T,Kitamoto HK,Nakamura A,Fukuda A,Tanaka Y
    Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells.
    Plant Physiol., 2007. 144(4): p. 1978-85
  10. Indorf M,Cordero J,Neuhaus G,RodrĂ­guez-Franco M
    Salt tolerance (STO), a stress-related protein, has a major role in light signalling.
    Plant J., 2007. 51(4): p. 563-74
  11. Datta S,Hettiarachchi C,Johansson H,Holm M
    SALT TOLERANCE HOMOLOG2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development.
    Plant Cell, 2007. 19(10): p. 3242-55
  12. Papdi C, et al.
    Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system.
    Plant Physiol., 2008. 147(2): p. 528-42
  13. Kumagai T, et al.
    The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana.
    Biosci. Biotechnol. Biochem., 2008. 72(6): p. 1539-49
  14. Du J, et al.
    Functional gene-mining for salt-tolerance genes with the power of Arabidopsis.
    Plant J., 2008. 56(4): p. 653-64
  15. Ding Z, et al.
    Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana.
    J Genet Genomics, 2009. 36(1): p. 17-29
  16. Park MY, et al.
    Isolation and functional characterization of the Arabidopsis salt-tolerance 32 (AtSAT32) gene associated with salt tolerance and ABA signaling.
    Physiol Plant, 2009. 135(4): p. 426-35
  17. Kl
    Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana.
    J. Exp. Bot., 2009. 60(6): p. 1679-89
  18. Wang H,Liang X,Wan Q,Wang X,Bi Y
    Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress.
    Planta, 2009. 230(2): p. 293-307
  19. Jiang L,Wang Y,Bj
    Arabidopsis radical-induced cell death1 is involved in UV-B signaling.
    Photochem. Photobiol. Sci., 2009. 8(6): p. 838-46
  20. Jaspers P, et al.
    Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors.
    Plant J., 2009. 60(2): p. 268-79
  21. Oh DH, et al.
    Loss of halophytism by interference with SOS1 expression.
    Plant Physiol., 2009. 151(1): p. 210-22
  22. Datta S,Johansson H,Hettiarachchi C,Holm M
    STH2 has 2 B there: An insight into the role of B-box containing proteins in Arabidopsis.
    Plant Signal Behav, 2008. 3(8): p. 547-8
  23. Rodriguez-Franco M,Sarmiento F,Marquardt K,Markus R,Neuhaus G
    Does light taste salty?
    Plant Signal Behav, 2008. 3(1): p. 72-3
  24. Hamaji K, et al.
    Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis.
    Plant Cell Physiol., 2009. 50(12): p. 2023-33
  25. Khanna R, et al.
    The Arabidopsis B-box zinc finger family.
    Plant Cell, 2009. 21(11): p. 3416-20
  26. Zhou GA,Chang RZ,Qiu LJ
    Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis.
    Plant Mol. Biol., 2010. 72(4-5): p. 357-67
  27. Smith CA,Melino VJ,Sweetman C,Soole KL
    Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana.
    Physiol Plant, 2009. 137(4): p. 459-72
  28. Jha D,Shirley N,Tester M,Roy SJ
    Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport.
    Plant Cell Environ., 2010. 33(5): p. 793-804
  29. Nelson DC, et al.
    Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(15): p. 7095-100
  30. Gao Z, et al.
    Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis.
    Plant Cell Physiol., 2010. 51(5): p. 767-75
  31. Xu K,Zhang H,Blumwald E,Xia T
    A novel plant vacuolar Na+/H+ antiporter gene evolved by DNA shuffling confers improved salt tolerance in yeast.
    J. Biol. Chem., 2010. 285(30): p. 22999-3006
  32. Pasapula V, et al.
    Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions.
    Plant Biotechnol. J., 2011. 9(1): p. 88-99
  33. Wang H, et al.
    Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses.
    Plant Cell Physiol., 2010. 51(10): p. 1754-65
  34. Jossier M, et al.
    The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance.
    Plant J., 2010. 64(4): p. 563-76
  35. Jacoby RP,Millar AH,Taylor NL
    Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance.
    J. Proteome Res., 2010. 9(12): p. 6595-604
  36. Zhang X, et al.
    The R-R-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis.
    Plant Cell Physiol., 2011. 52(1): p. 138-48
  37. Zhang Z, et al.
    Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation.
    Plant Cell, 2011. 23(1): p. 396-411
  38. Xianjun P, et al.
    Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis.
    Plant Cell Rep., 2011. 30(8): p. 1493-502
  39. Li J,Wang X,Zhang Y,Jia H,Bi Y
    cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots.
    Planta, 2011. 234(4): p. 709-22
  40. Chen S, et al.
    Transcriptome sequencing of a highly salt tolerant mangrove species Sonneratia alba using Illumina platform.
    Mar Genomics, 2011. 4(2): p. 129-36
  41. Ying S, et al.
    Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis.
    Plant Cell Rep., 2011. 30(9): p. 1683-99
  42. Yan H, et al.
    Nuclear localization and interaction with COP1 are required for STO/BBX24 function during photomorphogenesis.
    Plant Physiol., 2011. 156(4): p. 1772-82
  43. Zhang L, et al.
    An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis.
    Plant Physiol., 2011. 157(2): p. 854-65
  44. Yamawaki S,Yamashino T,Nakamichi N,Nakanishi H,Mizuno T
    Light-responsive double B-box containing transcription factors are conserved in Physcomitrella patens.
    Biosci. Biotechnol. Biochem., 2011. 75(10): p. 2037-41
  45. Zhao X,Wang M,Quan T,Xia G
    The role of TaCHP in salt stress responsive pathways.
    Plant Signal Behav, 2012. 7(1): p. 71-4
  46. Wang RK, et al.
    Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants.
    Plant Mol. Biol., 2012. 79(1-2): p. 123-35
  47. Jiang L, et al.
    Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity.
    Cell Res., 2012. 22(6): p. 1046-57
  48. Zhou ML, et al.
    Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica.
    Gene, 2012. 506(1): p. 10-7
  49. Ford BA,Ernest JR,Gendall AR
    Identification and characterization of orthologs of AtNHX5 and AtNHX6 in Brassica napus.
    Front Plant Sci, 2012. 3: p. 208
  50. Ye J,Zhang W,Guo Y
    Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization.
    Plant Cell Rep., 2013. 32(1): p. 139-48
  51. Xie Y,Mao Y,Lai D,Zhang W,Shen W
    H(2) enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.
    PLoS ONE, 2012. 7(11): p. e49800
  52. Tezuka K,Taji T,Hayashi T,Sakata Y
    A novel abi5 allele reveals the importance of the conserved Ala in the C3 domain for regulation of downstream genes and salt tolerance during germination in Arabidopsis.
    Plant Signal Behav, 2013. 8(3): p. e23455
  53. Ellouzi H, et al.
    Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.
    Plant Signal Behav, 2013. 8(2): p. e23136
  54. Li X, et al.
    A novel salt-induced gene from sheepgrass, LcSAIN2, enhances salt tolerance in transgenic Arabidopsis.
    Plant Physiol. Biochem., 2013. 64: p. 52-9
  55. Sarmiento F
    The BBX subfamily IV: additional cogs and sprockets to fine-tune light-dependent development.
    Plant Signal Behav, 2013. 8(4): p. e23831
  56. L
    RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.
    Planta, 2013. 237(6): p. 1547-59
  57. Gangappa SN, et al.
    The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis.
    Plant Cell, 2013. 25(4): p. 1243-57
  58. Chen L, et al.
    Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA.
    Mol. Biol. Rep., 2013. 40(8): p. 4759-67
  59. Kim DY,Scalf M,Smith LM,Vierstra RD
    Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis.
    Plant Cell, 2013. 25(5): p. 1523-40
  60. Tilbrook K, et al.
    The UVR8 UV-B Photoreceptor: Perception, Signaling and Response.
    Arabidopsis Book, 2013. 11: p. e0164
  61. Li F, et al.
    The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways.
    PLoS ONE, 2014. 9(2): p. e87544
  62. Crocco CD, et al.
    The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana.
    Nat Commun, 2015. 6: p. 6202
  63. Lippuner V,Cyert MS,Gasser CS
    Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast.
    J. Biol. Chem., 1996. 271(22): p. 12859-66
  64. Song J, et al.
    Isolation and mapping of a family of putative zinc-finger protein cDNAs from rice.
    DNA Res., 1998. 5(2): p. 95-101